Site icon Wonderful Engineering

This World-First Computer Chip Transmits Data Through Sound Waves Rather Than Electrons

According to a press statement, Harvard researchers have controlled and modulated acoustic waves, or sound waves, with the help of an electric field in a computer chip for the first time.

The new breakthrough could have wide-ranging applications for the fields of quantum computing along with classical computing, which usually depends on data being transmitted using electrons.

Typically, classical computer chips transmit and process data by modulating electrons. This is done through transistors that encode data into the computer language of ones and zeroes — one being represented by high current and the other by the low current.

The Harvard team’s sound wave chip works more like a photonic chip, though it adds a few extra benefits into the mix.

Acoustic waves are slower than electromagnetic waves of the same frequency. This could make them precious for both classical and quantum applications.

“Acoustic waves are promising as on-chip information carriers for both quantum and classical information processing but the development of acoustically integrated circuits has been hampered by the inability to control acoustic waves in a low-loss, scalable manner,” said Marko Loncar, Tiantsai Lin Professor of Electrical Engineering at SEAS and senior author on a new study published in Nature Electronics.

“In this work, we showed we can control acoustic waves on an integrated lithium niobate platform, bringing us one step closer to an acoustic integrated circuit.”

Loncar and his colleagues used lithium niobate to build an on-chip, electro-acoustic modulator that controls the acoustic waves on the chip. The modulator applies an electric field to control the phase, amplitude, and frequency of the sound waves.

“This work advances using acoustic waves for quantum and classical computing,” said Linbo Shao, a former graduate student and postdoctoral fellow at SEAS, and the first author of the paper.

“Previous acoustic devices were passive but now we have the electrical modulation to actively tune the acoustic devices,” he continued, “which enables a lot of functionalities in the future development of microwave signal processing using these types of acoustic devices.”

According to Shao, the team’s work “paves the way for high-performance acoustic-wave based devices and circuits for next-generation microwave signal processing as well as on-chip quantum networks and interfaces linking different types of quantum systems.”

Earlier this month, Sydney-based firm Silicon Quantum Computing developed the first integrated silicon quantum computer circuit manufactured at the atomic scale. Shortly after its revelation, the company’s founder and director, Michelle Simmon, said commercial quantum computing products may be about five years away.

Exit mobile version